Crystal structures of the solvates trans- $\left[\mathrm{RhCl}_{2}(\mathrm{MeOH})\left\{\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{CH}_{2} \mathrm{PCy}_{2}\right)_{2}\right\}\right] .0 .41 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and trans-[$\left.\mathrm{RhCl}_{2}(\mathrm{EtOH})\left\{\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{CH}_{2} \mathrm{PCy}_{2}\right)_{2}\right\}\right] . \mathrm{H}_{2} \mathrm{O}$. Factors influencing the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}-1,3-\left(\mathrm{CH}_{2} \mathrm{PR}_{2}\right)_{2}$ with RhCl_{3}

Ronald J. Cross *, Alan R. Kennedy, Ljubica Manojlović-Muir, Kenneth W. Muir
Chemistry Department, University of Glasgow, Glasgow G12 8QQ, UK

Received November 11, 1994

Abstract

The terdentate ligands $\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{CH}_{2} \mathrm{PCy}_{2}\right)_{2}$ (PCP: $\mathrm{Cy}=$ cyclohexyl) in the octahedral solvento complexes trans$\left[\mathrm{RhCl}_{2}(\mathrm{MeOH})(\mathrm{PCP})\right]$ and trans- $\left[\mathrm{RhCl}_{2}(\mathrm{EtOH})(\mathrm{PCP})\right]$ adopt conformations which minimise the interactions between the sterically demanding Cy groups and the trans chlorides. Comparison of these structures with those of related molecules, including square-pyramidal and square-planar species, suggests an explanation for the different structural types obtained as products from reactions of $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and various ligands $\mathrm{C}_{6} \mathrm{H}_{4}-1,3-\left(\mathrm{CH}_{2} \mathrm{ER}_{2}\right)_{2}$ with $\mathrm{E}=\mathrm{N}$ or P .

Keywords: Rhodium; Terdentate ligands; Crystal structure; Orthometallation

1. Introduction

As part of their studies on the interaction of bulky ligands with transition metal ions, Shaw and his coworkers showed that $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{IrCl}_{3} . x \mathrm{H}_{2} \mathrm{O}$ reacted with $\mathrm{C}_{6} \mathrm{H}_{4}-1,3-\left(\mathrm{CH}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{R}={ }^{\mathrm{I}} \mathrm{Bu}\right)$ to produce the chlorohydrido complexes $\mathbf{1}$ [1]. Compounds of similar composition, 2 , were formed from the reactions with the α, ω-diphosphines ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}[2,3],{ }^{\mathrm{t}} \mathrm{Bu}_{2}-$ $\mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}^{\mathrm{C}} \mathrm{Bu}_{2}$ [3], and ${ }^{\dagger} \mathrm{Bu}_{2} \mathrm{PCH}_{2} \mathrm{CHMe}-$ $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}$ [4].

The formation of these latter complexes was always accompanied by $\left[\mathrm{MHCl}_{2}\left\{{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{PCH}_{2} \mathrm{CHR}^{1} \mathrm{CHR}^{2}\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}^{1} \mathrm{Bu}_{2}\right\}\right]_{2}$, and there was evidence that these dimeric species might be intermediates en route to 2 . The reaction of $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with the nitrogen donor ligand $\mathrm{C}_{6} \mathrm{H}_{4}-1,3-\left(\mathrm{CH}_{2} \mathrm{NMe}_{2}\right)_{2}$, however, has been shown to yield octahedrally coordinated trans[$\left.\mathrm{RhCl}_{2}\left(\mathrm{OH}_{2}\right)\left\{\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{CH}_{2} \mathrm{NMe}_{2}\right)_{2}\right\}\right]$ [5], and no hydrides were detected.

[^0]Recently we reported that the diphosphine $\mathrm{C}_{6} \mathrm{H}_{4}-1,3-$ $\left(\mathrm{CH}_{2} \mathrm{PCy}_{2}\right)_{2}$ reacted with $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ to produce octahedral trans- $\left[\mathrm{RhCl}_{2}\left(\mathrm{OH}_{2}\right)(\mathrm{PCP})\right]\left(\mathrm{PCP}=\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\right.$ $\left.\left(\mathrm{CH}_{2} \mathrm{PCy}_{2}\right)_{2}\right)$, characterised by a single-crystal X-ray structure determination [6]. We report here the formation and structure analyses of the solvates trans$\left[\mathrm{RhCl}_{2}(\mathrm{MeOH})\left\{\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{CH}_{2} \mathrm{PCy}_{2}\right)_{2}\right\}\right] .0 .41 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and trans- $\left[\mathrm{RhCl}_{2}(\mathrm{EtOH})\left\{\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{CH}_{2} \mathrm{PCy}_{2}\right)_{2}\right\}\right]$. $\mathrm{H}_{2} \mathrm{O}$, which allow a rationalisation to be made of the products of the reactions of $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{C}_{6} \mathrm{H}_{4}-$ $1,3-\left(\mathrm{CH}_{2} \mathrm{PR}_{2}\right)_{2}$ or $\mathrm{C}_{6} \mathrm{H}_{4}-1,3-\left(\mathrm{CH}_{2} \mathrm{NR}_{2}\right)_{2}$.

2. Results and discussion

Recrystallisation of trans- $\left[\mathrm{RhCl}_{2}\left(\mathrm{OH}_{2}\right)(\mathrm{PCP})\right]$ from methanol or ethanol, respectively, produced the new solvates trans- $\left[\mathrm{RhCl}_{2}(\mathrm{MeOH})(\mathrm{PCP})\right]$ and trans$\left[\mathrm{RhCl}_{2}(\mathrm{EtOH})(\mathrm{PCP})\right]$, but attempts to prepare 2 -propanol or acetone solvates failed, probably for steric reasons (vide infra). Since the MeOH and EtOH adducts were stable in moist air it appears that the ligand strength series for these weakly bonded groups at this rhodium(III) centre is ${ }^{i} \mathrm{PrOH}, \mathrm{Me}_{2} \mathrm{CO}<\mathrm{H}_{2} \mathrm{O}<\mathrm{EtOH}$,

I $M=R h$ or $\mid r$

$2 M=R h$ or lr
$R^{1}, R^{2}=H$ or $M e$

Form 1.

MeOH . This differs from the series $\mathrm{H}_{2} \mathrm{O}<{ }^{\mathrm{i}} \mathrm{PrOH}<$ $\mathrm{EtOH}<\mathrm{MeOH}$ established from ligand competition reactions at $\operatorname{Ir}($ III) [7], and the most likely explanation is that steric crowding by our PCP ligand hinders the coordination of the more bulky solvents.

Heating either of the orange-coloured alcohol complexes under vacuum gave pink, unsolvated $\left[\mathrm{RhCl}_{2}-\right.$ (PCP)], as did recrystallisation of $\left[\mathrm{RhCl}_{2}(\mathrm{MeOH})(\mathrm{PCP}]\right.$ from warm CHCl_{3}. The unsolvated $\left[\mathrm{RhCl}_{2}(\mathrm{PCP})\right]$ has a single absorption at $330 \mathrm{~cm}^{-1}$ in its IR spectrum, which we assign to $\nu(\mathrm{Rh}-\mathrm{Cl})$ of mutually trans chlorides. This indicates a square-pyramidal structure with $\mathrm{Rh}-\mathrm{C}$ in the apical position, similar to the known [$\left.\mathrm{RhCl}_{2} \mathrm{Ph}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ [8]. Exposure of the pink [$\left.\mathrm{RhCl}_{2}(\mathrm{PCP})\right]$ to moist air allows its immediate conversion into orange [$\left.\mathrm{RhCl}_{2}\left(\mathrm{OH}_{2}\right)(\mathrm{PCP})\right]$, a process that can be reversed by flushing with dry N_{2}. Solutions of $\left[\mathrm{RhCl}_{2}(\mathrm{PCP})\right]$ in CDCl_{3} are orange in colour, indicating the presence of an octahedral species. The ${ }^{31} \mathrm{P}$ NMR spectra of all the PCP complexes in CDCl_{3} are practically identical, as are the ${ }^{1} \mathrm{H}$ resonances assignable to the $\left[\mathrm{RhCl}_{2}(\mathrm{PCP})\right]$ fragments (see Experimental details). We take this as an indication that the weak oxygen donors have been replaced by the halogenated solvent (there are precedents for such coordination of chlorocarbons) [9].

We describe here the crystal structures of trans$\left[\mathrm{RhCl}_{2}(\mathrm{MeOH})(\mathrm{PCP})\right] .0 .41 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and trans$\left[\mathrm{RhCl}_{2}(\mathrm{EtOH})(\mathrm{PCP})\right] . \mathrm{H}_{2} \mathrm{O}$ (see Figs. 1 and 2, Table 1). We have also determined the structure of anhydrous trans- $\left[\mathrm{RhCl}_{2}(\mathrm{EtOH})(\mathrm{PCP})\right]$. The crystals are monoclinic, space group $P 2_{1} / a$, with $a=14.485(4) \AA, b=$ 10.792(3) $\AA, c=22.962(12) \AA, \beta=103.18(3)^{\circ}, V=$ $3495 \AA^{3}, Z=4 . R=0.070$ for 1186 unique reflections with $I>3 \sigma(I)$ and 186 refined parameters. The results establish that the anhydrous and hydrated forms of trans- $\left[\mathrm{RhCl}_{2}(\mathrm{EtOH})(\mathrm{PCP})\right]$ are not isomorphous, but that they contain trans- $\left[\mathrm{RhCl}_{2}(\mathrm{EtOH})(\mathrm{PCP})\right]$ molecules with very similar geometries. Because the accuracy of the analysis of the anhydrous complex is compromised by the low data/parameter ratio we have confined our discussion to the hydrate complex, for which more satisfactory data are available.

There are no previous structural reports of methanol bonded to $\mathbf{R h}($ III $)$ (the structure of the anion $\left[\mathrm{Rh}_{2}(\mu\right.$ -

Fig. 1. A view of the molecule trans- $\left[\mathrm{RhCl}_{2}(\mathrm{MeOH})\left\{\mathrm{C}_{6} \mathrm{H}_{3}-2,6\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2} \mathrm{PCy}_{2}\right)_{2}\right\}\right]$. Here and in Fig. 250% probability ellipsoids are displayed except for hydrogen atoms which are represented by spheres of arbitrary size. Cyclohexyl C atoms are numbered cyclically $\mathrm{C}(n 1)-\mathrm{C}(n 6)$ for rings $n=\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , starting with the ipso carbon atom. The label for each ring is placed beside $\mathrm{C}(n 2)$.
$\left.\mathrm{I}_{2} \mathrm{I}_{4} \mathrm{Cl}(\mathrm{CO})_{2}(\mathrm{MeOH})\right]^{-}$, determined by use of synchrotron radiation on an exceptionally small crystal, did not satisfactorily locate the methanol) [10] and only one (the anion $\left.\left[\mathrm{RhBr}_{4}(\mathrm{CO})(\mathrm{EtOH})\right]^{-}[11]\right)$ of an ethanol complex. Both the methanol and ethanol solvate complexes are broadly similar in their geometry to trans$\left[\mathrm{RhCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{PCP})\right]$] ${ }^{\text {i }} \mathrm{PrOH}$ [6], with the most significant deviation from octahedral coordination being that involving the $\mathrm{P}(1)-\mathrm{Rh}-(2)$ angles, which are constrained to $166 \cdot 1(1)^{\circ}$ and $164 \cdot 5(1)^{\circ}$ in the MeOH and EtOH complexes, respectively.

The $\mathbf{R h}-\mathbf{C}, \mathbf{R h}-\mathbf{P}$ and $\mathbf{R h}-\mathbf{C l}$ distances in the MeOH and EtOH complexes are unexceptional (see Ref. [6]). The crystal of the methanol complex contains $0.41(1)$ of a poorly defined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule per rhodium. The partially present $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is disordered over two sites by rotation about an axis passing through its

Fig. 2. A view of the molecule trans- $\left[\mathrm{RhCl}_{2}(\mathrm{EtOH})\left(\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\right.\right.$ $\left.\left(\mathrm{CH}_{2} \mathrm{PCy}_{2}\right)_{2} \mathrm{~J}\right]$ and of its associated water molecule. Broken lines indicate hydrogen bonds. Ring labels are indicated in the same way as in Fig. 1.
carbon atom; each orientation appears to permit one chlorine to hydrogen bond to the methanol hydroxy group (the $\mathrm{O} \ldots \mathrm{Cl}$ contacts of ca. $2.6 \AA$ are short and
suggest systematic error in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ chlorine atom positions). In the EtOH complex a water molecule is weakly hydrogen bonded to the coordinated ethanol

Table 1
Selected distances ((\AA) and angles $\left({ }^{\circ}\right)$ in trans- $\left[\mathrm{RhCl}_{2}(\mathrm{EtOH})\left\{\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{CH}_{2} \mathrm{PCy}_{2}\right)_{2}\right\}\right] \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{A})$ and trans- $\left[\mathrm{RhCl}_{2}\left(\mathrm{MeOH}^{2}\right)\left\{\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2} \mathrm{PCy}_{2}\right)_{2}\right\}\right] .0 .41 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (B)

Bond lengths	(A)	(B)		(A)	(B)
Rh-Cl(1)	2.354(3)	2.342(3)	$\mathrm{Rh}-\mathrm{Cl}(2)$	2.376(3)	2.347 (3)
Rh-P(1)	$2.363(3)$	2.346 (3)	$\mathrm{Rh}-\mathrm{P}(2)$	$2.357(3)$	2.361(3)
$\mathrm{Rh}-\mathrm{O}(1)$	2.264(6)	$2.239(6)$	$\mathrm{Rh}-\mathrm{C}(1)$	2.008(8)	$1.984(8)$
$\mathrm{P}(1)-\mathrm{C}(7)$	1.818(9)	1.827(9)	$\mathrm{P}(1)-\mathrm{C}(\mathrm{A} 1)$	1.843(11)	1.819(9)
$\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	1.827(10)	$1.839(9)$	$\mathrm{P}(2)-\mathrm{C}(8)$	1.831(9)	1.842(9)
$\mathrm{P}(2)$ - $\mathrm{C}(\mathrm{C} 1)$	1.823(10)	1.847(9)	$\mathrm{P}(2)-\mathrm{C}(\mathrm{D} 1)$	1.870(11)	1.845(9)
$\mathrm{O}(1)-\mathrm{C}(9)$	1.434(10)	1.407(15)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.429(12)	1.390 (11)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.363(12)	1.413(11)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.393(12)	1.369 (12)
$\mathrm{C}(2)-\mathrm{C}(7)$	1.511(13)	1.519(12)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.359(14)	1.340(14)
C(4)-C(5)	1.377(14)	1.381(13)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.411(12)	1.365(12)
$\mathrm{C}(6)-\mathrm{C}(8)$	1.521(13)	1.515(11)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.489(13)	
Bond angles					
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{Cl}(2)$	177.1(1)	178.0(1)	$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{P}(1)$	85.0(1)	93.9(1)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{P}(2)$	95.8(1)	84.9(1)	$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{O}(1)$	90.7(2)	88.1(2)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{C}(1)$	94.1(3)	90.4(3)	$\mathrm{Cl}(2)-\mathrm{Rh}-\mathrm{P}(1)$	94.0 (1)	85.2(1)
$\mathrm{Cl}(2)-\mathrm{Rh}-\mathrm{P}(2)$	85.9(1)	96.4(1)	$\mathrm{Cl}(2)-\mathrm{Rh}-\mathrm{O}(1)$	86.7(2)	90.2(3)
$\mathrm{Cl}(2)-\mathrm{Rh}-\mathrm{C}(1)$	88.4(3)	91.3(3)	$\mathbf{P}(1)-\mathrm{Rh}-\mathrm{P}(2)$	164.6(1)	166.1(1)
$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{O}(1)$	95.6(2)	96.8(2)	$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{C}(1)$	82.5(3)	82.6(3)
$\mathrm{P}(2)-\mathrm{Rh}-\mathrm{O}(1)$	99.8(2)	97.0(2)	$\mathrm{P}(2)-\mathrm{Rh}-\mathrm{C}(1)$	82.1(3)	83.5(3)
$\mathrm{O}(1)-\mathrm{Rh}-\mathrm{C}(1)$	174.7(3)	178.4(3)	$\mathrm{Rh}-\mathrm{P}(1)-\mathrm{C}(7)$	98.2(4)	98.7(3)
$\mathrm{Rh}-\mathrm{P}(1)-\mathrm{C}(\mathrm{A} 1)$	125.4(4)	120.7(4)	$\mathrm{Rh}-\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	114.7(4)	115.1(3)
$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(\mathrm{A} 1)$	107.0(5)	103.2(5)	$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	105.8(5)	105.3(4)
$\mathrm{C}(\mathrm{A} 1)-\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	104.0(5)	110.8(5)	$\mathrm{Rh}-\mathrm{P}(2)-\mathrm{C}(8)$	98.3(4)	98.5(3)
$\mathrm{Rh}-\mathrm{P}(2)-\mathrm{C}(\mathrm{C} 1)$	122.6(4)	121.9(4)	$\mathrm{Rh}-\mathrm{P}(2)-\mathrm{C}(\mathrm{D} 1)$	118.7(4)	119.7 (3)
$\mathrm{C}(8)-\mathrm{P}(2)-\mathrm{C}(\mathrm{C} 1)$	104.3(5)	103.9(5)	$\mathrm{C}(8)-\mathrm{P}(2)-\mathrm{C}(\mathrm{D} 1)$	101.0(5)	102.4(5)
$\mathrm{C}(\mathrm{C} 1)-\mathrm{P}(2)-\mathrm{C}(\mathrm{D} 1)$	107.6(5)	106.7(4)	Rh-O(1)-C(9)	126.6(6)	128.4(8)
$\mathrm{Rh}-\mathrm{C}(1)-\mathrm{C}(2)$	$119.4(7)$	122.2(6)	$\mathrm{Rh}-\mathrm{C}(1)-\mathrm{C}(6)$	121.5(7)	121.0(6)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	119.0 (8)	$116.7(8)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	118.3(9)	121.1(9)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	119.0(8)	118.2(8)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	122.6(9)	120.6(9)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	122.1(10)	121.3(10)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.7(9)	119.9(10)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	119.8(10)	120.1(9)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	120.9(10)	120.8(9)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(8)$	119.5(8)	119.3(7)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(8)$	119.5(9)	119.7(8)
$\mathrm{P}(1)-\mathrm{C}(7)-\mathrm{C}(2)$	107.0(7)	108.7(6)	$\mathrm{P}(2)-\mathrm{C}(8)-\mathrm{C}(6)$	108.5(7)	108.0(6)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	111.9(8)				
Torsion angles	(A)	(B)			
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	-178.9(4)	2.1(4)			
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{P}(2)-\mathrm{C}(\mathrm{C} 1)$	5.6(4)	179.6(4)			
$\mathrm{Cl}(2)-\mathrm{Rh}-\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	3.8(4)	-179.7(4)			
$\mathrm{Cl}(2)-\mathrm{Rh}-\mathrm{P}(2)-\mathrm{C}(\mathrm{C} 1)$	-176.7(4)	1.1 (4)			
$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{C}(1)-\mathrm{C}(2)$	-15.9(7)	-16.5(7)			
$\mathrm{C}(1)-\mathrm{Rh}-\mathrm{P}(1)-\mathrm{C}(7)$	27.5(4)	23.7(4)			
$\mathrm{C}(1)-\mathrm{Rh}-\mathrm{P}(1)-\mathrm{C}(\mathrm{A} 1)$	145.1(5)	134.8(5)			
$\mathrm{C}(1)-\mathrm{Rh}-\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	-84.1(5)	-87.8(4)			
$\mathrm{P}(2)-\mathrm{Rh}-\mathrm{C}(1)-\mathrm{C}(6)$	-20.0(7)	-13.4(7)			
$\mathrm{C}(1)-\mathrm{Rh}-\mathrm{P}(2)-\mathrm{C}(8)$	25.2(4)	22.9(4)			
$\mathrm{C}(1)-\mathrm{Rh}-\mathrm{P}(2)-\mathrm{C}(\mathrm{C} 1)$	-87.7(5)	-89.4(5)			
$\mathrm{C}(1)-\mathrm{Rh}-\mathrm{P}(2)-\mathrm{C}(\mathrm{D} 1)$	132.7(5)	132.4(4)			
$\mathrm{Rh}-\mathrm{P}(1)-\mathrm{C}(7)-\mathrm{C}(2)$	-36.8(6)	-30.2(6)			
$\mathrm{Rh}-\mathrm{P}(2)-\mathrm{C}(8)-\mathrm{C}(6)$	-30.2(6)	-30.8(6)			
$\mathrm{Rh}-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	171.5(12)	-179.6(12)			
$\mathrm{Rh}-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	-6.3(7)	-0.9(6)			
$\mathrm{Rh}-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	- 173.3(13)	179.2(12)			
$\mathrm{Rh}-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(8)$	3.6 (7)	-5.5(6)			
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{P}(1)$	32.0(7)	23.8(7)			
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{P}(2)$	21.4(7)	27.0(7)			

$[\mathrm{O}(2) \ldots \mathrm{O}(1) 2.74(1) \AA]$ and to one of the cis chlorides $[\mathrm{O}(2) \ldots \mathrm{Cl}(2) 3.22(1) \AA]$; it also participates in a contact of $3.24(1) \AA$ with $\mathrm{Cl}(2)$ of a neighbouring complex molecule. Otherwise there are no intermolecular contacts significantly shorter than the sum of the appropriate van der Waals radii.

We have previously noted the sensitivity of $\mathrm{Rh}-\mathrm{OH}_{2}$ bond lengths to the nature of the trans ligands [6]. The Rh-O bonds in our PCP complexes are long, but are typical of such bonds trans to σ-bonded carbon: RhOH_{2} is $2 \cdot 274(3) \AA, \mathrm{Rh}-\mathrm{OHMe}$ is $2 \cdot 239(7) \AA$, and Rh-OHEt is $2 \cdot 264(6) \AA$. The small variations in the lengths of these $\mathrm{Rh}-\mathrm{O}$ bonds are unsurprising in view of the differences both in the substituents on oxygen and in the crystallographic environments: each O -donor ligand also participates in intermolecular hydrogen bonding. Much shorter Rh-O bonds of $2.087(2) \AA$ and $2.118(4) \AA$ are found in the anion $\left[\mathrm{RhBr}_{4}(\mathrm{CO})(\mathrm{EtOH})\right]^{-}$ trans to carbonyl, a π-acidic ligand of low trans influence [11].

A feature of interest in complexes of terdentate ligands of the PCP type is the conformation adopted by the substituents on phosphorus. We have observed that in square-planar compounds [$\mathrm{MX}(\mathrm{PCP})$] $(\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}$ or Pt) and related derivatives, bulky ligand substituents Cy or ${ }^{\text {t }} \mathrm{Bu}$ adopt an eclipsed conformation (when viewed along the $\mathrm{P} \ldots \mathrm{P}$ axis of the PCP ligand) so that the local symmetry at the metal approximates to C_{s}, but less bulky substituents prefer staggered conformations and an overall C_{2} symmetry, leading to increased twisting of the chelate rings out of the coordination plane and corresponding reductions in the observed $\mathrm{M}-\mathrm{P}$ C(chelate) angles [12,13]. Table 2 compares the salient structural features of our $\mathrm{Rh}($ III) solvates with those of other five- and six-coordinate complexes containing ligands similar to either PCP or its NCN analogue. In each of the octahedral complexes the substituents of the P or N donor atoms are found to be staggered relative to the $\mathrm{P} \ldots \mathrm{P}$ or $\mathrm{N} . . \mathrm{N}$ axis, irrespective of whether they
are sterically demanding Cy or smaller Me groups. This marked difference from the structures of square-planar complexes is most likely caused by the interactions of the ligand substituents with the groups coordinated cis to the terdentate PCP or NCN. This argument is consistent with trends in torsion and bond angles apparent in Table 1: each Cl ligand participates in one eclipsed and one staggered $\mathrm{Cl}-\mathrm{Rh}-\mathrm{P}-\mathrm{C}(\mathrm{Cy})$ conformation (torsion angles respectively ca. 0° and 180°); the $\mathrm{Cl}-\mathrm{Rh}-\mathrm{P}$ angles associated with the eclipsed conformations are $94-96^{\circ}$ compared with $85-86^{\circ}$ for the staggered arrangements. Overall C_{s} symmetry would require one Cl ligand to participate in two, rather than one, eclipsed $\mathrm{Cl}-\mathrm{Rh}-\mathrm{P}-\mathrm{C}(\mathrm{Cy})$ conformations. A further consequence of the adoption of the C_{2} (staggered) conformation in the octahedral complexes is a constriction of about 4° in the $\mathrm{Rh}-\mathrm{P}-\mathrm{C}$ (chelate ring) angles (see Table 2).

Square-pyramidal hydrido complexes of types 1 or 2, in which the \mathbf{H} atoms are in apical position, have structures resembling those of square-planar analogues, with bulky ligand substituents lying eclipsed. Presumably the hydride cis to the terdentate ligands is not large enough to interfere with this conformation. We note, however, that five-coordinate complexes which have larger (cis) apical atoms, $\left[\mathrm{NiI}_{2}(\mathrm{NCN})\right]$ and $\left[\operatorname{PtI}\left(\mathrm{I}_{2}\right)(\mathrm{NCN})\right]$, adopt an intermediate geometry tending towards eclipsed.

The steric interactions indicated by the adopted conformations offer a clue to rationalising the different product types of the reactions between $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{C}_{6} \mathrm{H}_{4}-1,3-\left(\mathrm{CH}_{2} \mathrm{PR}_{2}\right)_{2}$ or $\mathrm{C}_{6} \mathrm{H}_{4}-1,3-\left(\mathrm{CH}_{2} \mathrm{NR}_{2}\right)_{2}$. In the first place, it seems clear that the steric demand of the terdentate ligands produced by the metallation reactions imposes constraints on the nature of the final products. We have previously shown that in square-planar compounds of type $[\mathrm{MX}(\mathrm{PCP})]$ and $[\mathrm{MX}(\mathrm{NCN})]$ the terdentate ligand is flexible enough to allow a molecular geometry approximating to either C_{s}, in which the terminal R groups are eclipsed along the $\mathrm{P} . . \mathrm{P}$ or

Table 2
Selected distances ((\AA) and angles $\left({ }^{\circ}\right)$ in octahedral and square pyramidal complexes with terdentate PCP or NCN ligands

Compound	Geometry (ref.)	M-C	$\begin{aligned} & \mathrm{M}-\mathrm{P}(1) \mathrm{M}-\mathrm{P}(2) \\ & \text { or } \\ & \mathrm{M}-\mathrm{N}(1) \mathrm{M}-\mathrm{N}(2) \end{aligned}$	PMP or NMN	$\begin{aligned} & \mathrm{M}-\mathrm{P}-\mathrm{C} \text { (ring) or } \\ & \mathrm{M}-\mathrm{N}-\mathrm{C} \text { (ring) } \end{aligned}$	Aromatic ${ }^{\text {a }}$ tilt.	Substituent Conformation
$\left[\mathrm{RhCl}_{2}\left(\mathrm{OH}_{2}\right)\left(\left(\mathrm{Cy}_{2} \mathrm{PCH}_{2}\right.\right.\right.$	Oct. [6]	2.004(4)	2.351(1) 2.354(2)	165.8(1)	99.3(2) 98.6(2)	14.6	staggered
$\left.\left[\mathrm{RhCl}_{2}(\mathrm{MeOH})\left(\mathrm{Cy}_{2} \mathrm{PCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}\right]$	Oct.	1.984(8)	$2.346(3) 2.361(3)$	166.1(1)	98.7(3) 98.5(3)	14.8	staggered
$\left[\mathrm{RhCl}_{2}(\mathrm{EtOH})\left(\left(\mathrm{Cy}_{2} \mathrm{PCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}\right]$	Oct.	$2.008(8)$	$2.363(3) 2.357(3)$	164.6(1)	98.2(4) 98.3(4)	19.5	staggered
$\left.\left.\left[\mathrm{RhHCl}\left(\mathrm{Bu}_{2}{ }^{\text {P }} \mathrm{PCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}\right]\right]$	Sq. pyr. [14]	1.999(7)	$2.306(2) 2.302(2)$	168.82(8)	102.3(4) 102.5(3)	6.9	eclipsed
$\left[\mathrm{RhHCl}\left(\mathrm{Bu}_{2}{ }^{\text {P }} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{PBu}_{2}{ }^{1}\right)\right]$	Sq. pyr. [2]	2.082(2)	$2.310(1) 2.318(1)$	167.8	102.9102 .3	-	eclipsed
$\left[\mathrm{IrHCl}\left(\mathrm{Bu}_{2}{ }^{\text {P }} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{PBu}_{2}{ }^{2}\right)\right]$	Sq. pyr. [3]	$2.106(7)$	2.308(2) 2.311(2)	167.5(1)	103.5(2) 103.1(3)	-	eclipsed
[$\mathrm{IrHCl}\left(\mathrm{Bu}_{2}{ }^{1} \mathrm{PCH}_{2} \mathrm{CHMe}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PBu}_{2}{ }^{\text {' }}\right.$) ${ }^{\text {a }}$]	Sq. pyr. [4]	2.073(14)	2.299(3) 2.315(3)	167.4(1)	$103.7(4) 103.7(4)$		eclipsed
$\left.\left[\mathrm{RhCl}_{2}\left(\mathrm{OH}_{2}\right)\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}\right]$	Oct. [5]	1.913(3)	$2.160(3) 2.152(3)$	163.1(1)	104.5(2) 104.7(2)	14.6	staggered
$\left.\left[\mathrm{NiI}_{2}\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}\right]$	Sq. pyr. [15]	1.898(5)	$2.050(4) 2.038(4)$	$152.0(2)$	108.4109 .5	11.5	eclipsed
$\left.\left[\operatorname{PtI}\left(\mathrm{I}_{2}\right)\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}\right]$	Sq. pyr. [16]	1.937(9)	$2.116(7) 2.106(8)$	$160.7(3)$	108.0108 .9	9.26	eclipsed
$\left.\left.\left[\mathrm{PtCl}_{3}\right\}\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}\right]$	Oct. [17,18]	1.948(12)	2.152(12) 2.143(9)	160.3 (6)	106.1(7) 106.9(7)	16.3	staggered
$\left.\left[\mathrm{PtI}_{2}(\mathrm{p}-\mathrm{tol})\left(\text { (} \mathrm{Me}_{2} \mathrm{NCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}\right]$	Oct. [18]	1.99(2)	2.15(2) 2.21(2)	162.5(8)	106.1106 .9	12.9	staggered

[^1]

Fig. 3. A view of a space-filling model of the molecule trans-$\left[\mathrm{RhCl}_{2}(\mathrm{EtOH})-\left\{\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{CH}_{2} \mathrm{PCy}_{2}\right)_{2}\right\}\right]$ and of its associated water molecule. The view direction is approximately the same as that of Fig. 2.
$\mathrm{N} \ldots \mathrm{N}$ axis, or C_{2}, with staggered R groups, and that bulky Cy or ${ }^{1} \mathrm{Bu}$ substituents favour C , to minimise $\mathrm{R} \cdots \mathrm{X}$ interactions [13]. In the octahedral molecules of the present study, the adoption of an approximate C_{2} symmetry is necessary to avoid conflict between the terminal R groups and the "axial" chloride ligands. This necessarily leads to an increased interaction between R and the solvento ligands trans to σ-C, but with the smaller solvent molecules involved it is clear that even with $\mathrm{R}=\mathrm{Cy}$ this can be achieved (though the space-filling diagram of trans-[$\left.\mathrm{RhCl}_{2}(\mathrm{EtOH})(\mathrm{PCP})\right]$ (Fig. 3) reveals how crowded this arrangement is). It appears that with the even more sterically demanding ${ }^{1} \mathrm{Bu}$ substituents [20] neither configuration can be achieved, although a single axial H atom can be accommodated. The fact that $\left[\mathrm{Rh}(\mathrm{CO})\left\{\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2} \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right)_{2}\right)\right]$ fails to undergo oxidative addition with Cl_{2} [1], an unusual behaviour for a square-planar $\mathrm{Rh}(\mathrm{I})$ species, is compatible with this rationalisation.

With the formation of complexes $\left[\mathrm{RhCl}_{2}(\mathrm{~L})\left\{\mathrm{C}_{6} \mathrm{H}_{3}-\right.\right.$ $\left.\left.2,6-\left(\mathrm{CH}_{2} \mathrm{P}^{\prime} \mathrm{Bu}_{2}\right)_{2}\right\}\right]$, or even $\left[\mathrm{RhCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{3}-2,6\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2} \mathrm{P}^{t} \mathrm{Bu}_{2}\right)_{2}\right\}\right]$, precluded on steric grounds, another reaction path must operate. There is evidence that the formation of five-coordinate complexes of types 1 and 2 is preceded by binuclear $\left[\mathrm{Rh}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}(\mathrm{PCHP})_{2}\right]$ [2] and [$\left.\mathrm{RhCl}_{2}\left(\mathrm{OH}_{2}\right)(\mathrm{NCN})\right]$ by $\left[\mathrm{RhCl}_{3}(\mathrm{NCHN})\right]$ [5]. The metallation step is thus probably the slowest, after both coordination of the P or N donor atoms and, when appropriate, the reduction of a $\mathrm{Rh}-\mathrm{Cl}$ to $\mathrm{Rh}-\mathrm{H}$. Also, the metallation step might require preformation of trans-spanning $\mathrm{P}-\mathrm{P}$ or $\mathrm{N}-\mathrm{N}$ chelates [13,21]. We suggest, therefore, that the presence of the highly sterically demanding tert-butyl groups prevents the formation of the key structures en route to metallated complexes until one Cl ligand has been replaced by H .

3. Experimental details

NMR spectra were recorded on Bruker AM200 or SW200 instruments operating in the Fourier transform mode. IR spectra were recorded for KBr discs on a Phillips FTIR spectrophotometer. Microanalyses were performed at Glasgow University Chemistry Department microanalytical laboratory. Reactions were carried out under dry, oxygen-free nitrogen. All solvents were degassed.

3.1. $\left[\mathrm{RhCl}_{2}(\mathrm{MeOH})(\mathrm{PCP})\right]$

A mixture of $\left[\mathrm{RhCl}_{2}\left(\mathrm{OH}_{2}\right)(\mathrm{PCP})\right] .{ }^{\mathrm{i}} \mathrm{PrOH}[6](0.22 \mathrm{~g}$, 0.29 mmol) and methanol (30 ml) was refluxed for 24 h. After evaporation of the solvent in a nitrogen stream, the residual pale-brown powder was recrystallised from a mixture of methanol (20 ml) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ at $-5^{\circ} \mathrm{C}$ to yield orange needles of $\left[\mathrm{RhCl}_{2}(\mathrm{MeOH})\right.$ (PCP)]. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.51 \mathrm{~g}, 51 \%)$, M.Pt. $268-271^{\circ} \mathrm{C}(\mathrm{dec})$. The dichloromethane molecule was rapidly lost on standing (20 min) to leave an orange powder of $\left[\mathrm{RhCl}_{2}(\mathrm{MeOH})(\mathrm{PCP})\right] .{ }^{31} \mathrm{P}$ NMR spectrum in $\mathrm{CHCl}_{3}, \delta$ $39.5, J(\mathrm{Rh}-\mathrm{P}), 95.1 \mathrm{~Hz} ;{ }^{1} \mathrm{H}$ NMR spectrum, $\delta\left(\mathrm{CH}_{2}\right.$ chelate ring) 3.31(t, $\left.\left.\right|^{2} J_{(\mathrm{P}-\mathrm{H})}+{ }^{4} J_{(\mathrm{P}-\mathrm{H})} \mid=8.32 \mathrm{~Hz}\right)$.

3.2. $\left[\mathrm{RhCl}_{2}(\mathrm{EtOH})(\mathrm{PCP})\right]$

A similar recrystallisation of $\left[\mathrm{RhCl}_{2}\left(\mathrm{OH}_{2}\right)\right.$ (PCP)]. ${ }^{i} \mathrm{PrOH}$ from hot ethanol produced $\left[\mathrm{RhCl}_{2}\right.$ (EtOH)(PCP)] as orange needles, M.Pt. $254-256^{\circ} \mathrm{C}$ (dec). Anal. Found: C, 56.6; H, 7.75; Cl, 10.2. $\mathrm{C}_{34} \mathrm{H}_{57} \mathrm{Cl}_{2} \mathrm{OP}_{2} \mathrm{Rh}$ calc.: $\mathrm{C}, 56.9 ; \mathrm{H}, 8.0 ; \mathrm{Cl}, 9.9 \%$. ${ }^{31} \mathrm{P}$ NMR spectrum in $\mathrm{CHCl}_{3}, \delta 39.9, J(\mathrm{Rh}-\mathrm{P})=95.3 \mathrm{~Hz}$; ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta\left(\mathrm{CH}_{2}\right.$ chelate ring) $3.31\left(\mathrm{t},\left|{ }^{2} J_{(\mathrm{P}-\mathrm{H})}+{ }^{4} J_{(\mathrm{P}-\mathrm{H})}\right|=8.32 \mathrm{~Hz}\right)$

3.3. X-ray analysis of trans- $\left[\mathrm{RhCl}_{2}(\mathrm{MeOH})\right.$ (PCP)].0.41 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Measurements were made at $26^{\circ} \mathrm{C}$ on an Enraf-Nonius CAD4 diffractometer with graphite-monochromatised Mo $-K \alpha$ radiation, $\lambda=0.71073 \AA$, using a fragment $0.40 \times 0.35 \times 0.33 \mathrm{~mm}$ cut from a larger crystal and mounted in a capillary.

3.3.1. Crystal data

$\mathrm{C}_{33} \mathrm{H}_{55} \mathrm{Cl}_{2} \mathrm{OP}_{2} \mathrm{Rh} .0 .41 \mathrm{CH}_{2} \mathrm{Cl}_{2}, M=738.45$, monoclinic, space group $P 2_{1} / a, a=11.003(1) \AA, b=$ $27.322(1) \AA, c=13.391(2) \AA, \beta=113.55(1)^{\circ}, V=$ $3690(2) \AA^{3}, Z=4, D_{c}=1.329 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-K \alpha)=$ $7.1 \mathrm{~cm}^{-1}$.

3.3.2. Measurements

Cell dimensions are based on the setting angles of 22 reflections with $11.7<\theta(\operatorname{Mo}-K \alpha)<22.8^{\circ}$. The intensities of 11,720 reflections with $2.6<\theta($ Mo $-K \alpha)<$ $30.0^{\circ}, \overline{1} \overline{5}-15, k 0-39, l 0-19$, were estimated from

Table 3
Fractional coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for trans- $\left[\mathrm{RhCl}_{2}(\mathrm{MeOH})(\mathrm{PCP})\right] .0 .41 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Atom	x	y	z	U
Rh	0.17869(6)	0.12697(3)	0.13067(5)	0.038
$\mathrm{Cl}(1)$	0.0136(2)	$0.0720(1)$	0.1269(2)	0.051
$\mathrm{Cl}(2)$	0.3407(3)	0.1842(1)	$0.1370(2)$	0.068
P(1)	$0.2652(2)$	0.1363(1)	0.3206(2)	0.045
P(2)	0.1257(2)	0.1008(1)	$-0.0500(2)$	0.043
O(1)	$0.0275(6)$	0.1868(3)	0.0910(5)	0.075
C(1)	0.3095(7)	0.0729(3)	0.1675(6)	0.041
C(2)	$0.4135(8)$	0.0689(3)	$0.2693(7)$	0.053
C(3)	$0.5029(10)$	0.0313(4)	0.2925(9)	0.077
C(4)	$0.4943(11)$	-0.0026(4)	0.2177(10)	0.097
C(5)	0.3942(10)	0.0002(4)	0.1147(9)	0.074
C(6)	$0.3030(8)$	$0.0370(3)$	0.0894(7)	0.049
C(7)	0.4271(8)	0.1079(3)	0.3538(7)	0.055
C(8)	0.1873 (8)	0.0375(3)	$-0.0207(7)$	0.053
C(9)	0.0267(17)	0.2323(5)	0.0416(13)	0.174
C(A1)	0.3071(9)	0.1966 (3)	0.3824(7)	0.062
C(A2)	0.3941(13)	0.1992(4)	0.5018(9)	0.101
C(A3)	$0.4402(13)$	0.2512(5)	$0.5393(10)$	0.105
C(A4)	0.3331(17)	0.2860 (5)	$0.5133(13)$	0.131
C(A5)	0.2403(16)	0.2853(4)	$0.3958(14)$	0.143
C(A6)	0.1916(11)	0.2337(4)	0.3503(9)	0.094
C(B1)	0.1843(8)	$0.0990(3)$	$0.3909(7)$	0.050
C(B2)	0.0502(9)	0.1204(4)	0.3756(8)	0.069
C(B3)	-0.0269(10)	0.0837(4)	0.4137(9)	0.086
C(B4)	0.0519(12)	0.0692(4)	0.5284(9)	0.086
C(B5)	0.1852(11)	0.0467(4)	0.5432(8)	0.084
C(B6)	0.2649(10)	0.0829(5)	$0.5076(8)$	0.084
C(C1)	0.2109(8)	0.1256 (3)	-0.1330(7)	0.057
C(C2)	$0.1826(10)$	0.1799(4)	-0.1578(8)	0.076
C(C3)	0.2535(11)	0.1988(5)	-0.2307(10)	0.101
C(C4)	0.3906(13)	0.1859(6)	-0.1919(11)	0.124
C(C5)	0.4157(11)	0.1324(5)	-0.1664(10)	0.098
C(C6)	$0.3536(11)$	0.1139(4)	-0.0917(9)	0.083
C(D1)	$-0.0494(8)$	$0.0918(3)$	-0.1428(7)	0.054
C(D2)	-0.0712(9)	$0.0636(4)$	-0.2448(8)	0.069
C(D3)	-0.2175(11)	0.0524(5)	-0.3079(9)	0.091
C(D4)	-0.3041(10)	0.0967(5)	$-0.3314(9)$	0.091
C(D5)	-0.2769(10)	0.1257(5)	-0.2318(10)	0.091
C(D6)	$-0.1310(10)$	0.1384(4)	-0.1692(9)	0.077
$\mathrm{Cl}^{\prime}(3)$	-0.18031	0.19371	0.14224	0.151
$\mathrm{Cl}^{\prime}(4)$	-0.32663	0.09954	0.14704	0.269
$\mathrm{Cl}^{\prime}(5)$	-0.33855	0.13195	0.16728	0.143
$\mathrm{Cl}^{\prime}(6)$	-0.22462	0.19717	0.03372	0.243
$\mathrm{C}^{\prime}(5)$	-0.24393	0.13333	0.07899	0.086

$\omega / 2 \theta$ scans and corrected for Lp and absorption effects (empirical correction factors on $F 0.83-1.05$) [22]. On averaging 425 duplicate measurements ($R_{\text {int }}=0 \cdot 042$) intensities for 11,295 unique reflections were obtained. Further calculations used only the 3971 unique reflections with $I>3 \sigma(I)$.

3.3.3. Structure analysis

The structure was solved by Patterson and Fourier methods. Refinement on F with $w=1 / \sigma^{2}(F)$ of 354 parameters (Table 3) converged ($\Delta / \sigma<0.003$) at $R=$ $0.062, R=0.066, S=2.2$. Anisotropic $U_{i j}$ were used for all non-H atoms of the Rh complex. The H atom of the MeOH hydroxyl group was positioned from a differ-
ence synthesis and its $U_{\text {iso }}$ was refined. MeOH methyl H atoms were not included in the calculations. The structure contains 0.414 (6) of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule disordered so that there are four Cl sites. Many unsuccessful attempts were made to model this disorder. Finally the positional and $U_{\text {iso }}$ parameters of the $\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{C}$ and Cl atoms were estimated from a difference synthesis and only the occupancy parameter of the solvent molecule was refined. The H atoms of this molecule were not included in the calculations. Other H atom positions were calculated using stereochemical criteria with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Final $\Delta \rho$ values were -0.73 to $+0.88 \mathrm{e}^{\AA^{-3}}$. Tables of hydrogen atom coordinates and anisotropic displacement parameters and a complete list of bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.

Table 4
Fractional coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for trans- $\left[\mathrm{RhCl}_{2}(\mathrm{EtOH})(\mathrm{PCP})\right] \cdot \mathrm{H}_{2} \mathrm{O}$.

Atom	x	y	z	U
Rh	$0.20396(5)$	$0.11546(3)$	$-0.12004(6)$	0.029
Cl(1)	$0.20464(18)$	$0.01278(9)$	$-0.08808(18)$	0.035
Cl(2)	$0.21108(17)$	$0.21950(9)$	$-0.14632(18)$	0.036
P(1)	$0.15107(18)$	$0.12396(11)$	$0.05195(20)$	0.035
P(2)	$0.20607(19)$	$0.10772(11)$	$-0.30163(20)$	0.036
O(1)	$0.3839(4)$	$0.1202(3)$	$-0.0791(5)$	0.041
O(2)	$0.4703(5)$	$0.2287(3)$	$-0.1195(6)$	0.072
C(1)	$0.0437(6)$	$0.1192(4)$	$-0.1525(7)$	0.029
C(2)	$-0.0282(7)$	$0.1095(4)$	$-0.0717(7)$	0.035
C(3)	$-0.1381(7)$	$0.1202(5)$	$-0.0926(9)$	0.050
C(4)	$-0.1790(8)$	$0.1360(4)$	$-0.1883(10)$	0.053
C(5)	$-0.1105(8)$	$0.1427(4)$	$-0.2677(8)$	0.045
C(6)	$0.0017(7)$	$0.1341(3)$	$-0.2487(8)$	0.033
C(7)	$0.0179(7)$	$0.0905(4)$	$0.0338(8)$	0.043
C(8)	$0.0773(7)$	$0.1448(4)$	$-0.3354(8)$	0.042
C(9)	$0.4608(8)$	$0.0732(4)$	$-0.0877(8)$	0.045
C(10)	$0.5672(8)$	$0.0881(5)$	$-0.0347(10)$	0.073
C(A1)	$0.2191(8)$	$0.0882(4)$	$0.1659(8)$	0.046
C(A2)	$0.3389(8)$	$0.0814(5)$	$0.1578(9)$	0.057
C(A3)	$0.3979(9)$	$0.0594(5)$	$0.2563(10)$	0.069
C(A4)	$0.3440(11)$	$0.0061(6)$	$0.3002(10)$	0.095
C(A5)	$0.2237(10)$	$0.0118(5)$	$0.3077(9)$	0.065
C(A6)	$0.1683(9)$	$0.0341(5)$	$0.2053(10)$	0.073
C(B1)	$0.1278(7)$	$0.1998(4)$	$0.0948(7)$	0.040
C(B2)	$0.0478(7)$	$0.2072(5)$	$0.1807(8)$	0.056
C(B3)	$0.0290(8)$	$0.2731(5)$	$0.2004(9)$	0.065
C(B4)	$0.1330(9)$	$0.3049(5)$	$0.2297(9)$	0.068
C(B5)	$0.2161(8)$	$0.2971(4)$	$0.1477(9)$	0.060
C(B6)	$0.2342(7)$	$0.2316(4)$	$0.1261(8)$	0.044
C(C1)	$0.1954(8)$	$0.0369(4)$	$-0.3694(7)$	0.041
C(C2)	$0.2951(8)$	$-0.0041(4)$	$-0.3507(8)$	0.051
C(C3)	$0.2809(10)$	$-0.0619(5)$	$-0.4078(9)$	0.065
C(C4)	$0.1774(10)$	$-0.0946(5)$	$-0.3809(9)$	0.070
C(C5)	$0.0808(9)$	$-0.0554(4)$	$-0.4027(9)$	0.066
C(C6)	$0.0918(8)$	$0.0035(4)$	$-0.3457(8)$	0.049
C(D1)	$0.3018(8)$	$0.1554(4)$	$-0.3713(9)$	0.050
C(D2)	$0.4196(9)$	$0.1417(5)$	$-0.3528(9)$	0.066
C(D3)	$0.4925(10)$	$0.1891(6)$	$-0.3970(11)$	0.092
C(D4)	$0.4665(11)$	$0.1993(6)$	$-0.5080(11)$	0.090
C(D5)	$0.3475(12)$	$0.2103(6)$	$-0.5299(10)$	0.099
C(D6)	$0.2756(9)$	$0.1631(6)$	$-0.4857(9)$	0.075

3.4. X -ray analysis of trans- $\left[\mathrm{RhCl}_{2}(\mathrm{EtOH})(\mathrm{PCP})\right] \cdot \mathrm{H}_{2} \mathrm{O}$.

Unless stated otherwise the experimental and computational methods employed were similar to those used in the previous analysis. The crystal was a yellow plate of dimensions $0.45 \times 0.30 \times 0.05 \mathrm{~mm}$ obtained from $\mathrm{EtOH} /$ hexane solution.

3.4.1. Crystal data

$\mathrm{C}_{34} \mathrm{H}_{59} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Rh}, M=735.68$, monoclinic, space group $P 2_{1} / a, \quad a=12.389(1) ~ \AA, \quad b=22.575(2) \AA$, $c=12.937(2) \AA, \beta=93.27(1)^{\circ}, V=3612.3(7) \AA^{3}, Z=$ $4, D_{\mathrm{c}}=1.353 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-K \alpha)=7.3 \mathrm{~cm}^{-1}$.

3.4.2. Measurements

Cell dimensions are based on the setting angles of 25 reflections with $15.4<\theta(\mathrm{Mo}-K \alpha)<22.0^{\circ}$. The intensities of 8,859 reflections with $2.2<\theta(\mathrm{Mo}-K \alpha)<$ $27.8^{\circ}, h \overline{1} \overline{6}-16, k 0-29, l \overline{1} \overline{6}-0$, were estimated from $\omega / 2 \theta$ scans and corrected for Lp and absorption effects (empirical correction factors on $F 0.82-1.10$) [22]. On averaging 361 duplicate measurements ($R_{\text {int }}=0.059$) intensities for 8,498 unique reflections were obtained. Further calculations used only the 3089 unique reflections with $I>3 \sigma(I)$.

3.4.3. Structure analysis

Refinement on F with $w=1 / \sigma^{2}(F)$ of 371 parameters (Table 4) converged ($\Delta / \sigma<0.002$) at $R=0.055$, $R_{w}=0.054, S=1.7$. Final $\Delta \rho$ values were -0.77 to $+0.98 \mathrm{e}^{\circ} \AA^{-3}$. Water H atoms were not located; the position of the H atom of the ethanol hydroxy group was obtained from a difference synthesis. The GX package was used for all calculations [23]. Scattering factors and anomalous dispersion corrections were taken from Ref. [24]. Tables of hydrogen atom coordinates and of anisotropic displacement parameters;and a complete list of bond lengths and angles have been deposited with the Cambridge Crystallographic Data Centre.

Acknowledgements

We thank EPSRC for the purchase of a diffractometer and for a studentship (to A.R.K.), and Johnson, Matthey and Co., ple, for the loan of Rh salts.

References

[1] C.J. Moulton and B.L. Shaw, J. Chem. Soc., Dalton Trans., (1976) 1020.
[2] C.J. Crocker, R.J. Errington, W.S. McDonald, K.J. Odell and B.L. Shaw, J. Chem. Soc., Chem. Commun., (1979) 498; C.J. Crocker, R.J. Errington, R. Markham, C.J. Moulton, K.J. Odell and B.L. Shaw, J. Am. Chem. Soc., 102 (1980) 4373.
[3] C.J. Crocker, H.D. Empsall, R.J. Errington, E.M. Hyde, W.S. McDonald, R.J. Markham, M.C. Norton, B.L. Shaw and B. Weeks, J. Chem. Soc., Dalton Trans., (1982) 1217.
[4] R.J. Errington, W.S. McDonald and B.L. Shaw, J. Chem. Soc., Dalton Trans., (1982) 1829.
[5] A.A.H. van der Zeijden, G. van Koten, R. Luijk, K. Vrieze, C. Slob, H. Krabbendam and A.L. Spek, Inorg. Chem., 27 (1988) 1014.
[6] A.R. Kennedy, R.J. Cross and K.W. Muir, Inorg. Chim. Acta, in the press.
[7] R.H. Crabtree, P.C. Demou, D. Eden, J.M. Mihelcic, C.A. Parnell, J. McQuirk and G.E. Morris, J. Am. Chem. Soc., 104 (1982) 6994.
[8] J. Fawcett, J.H. Holloway and G.C. Saunders, Inorg. Chim. Acta, 202 (1992) 111.
[9] L.D. Martin and X. Xialong, Chinese J. Magn. Reson., 8 (1991) 327.
[10] P.J. Rizkallah, S.J. Maginn and M.M. Harding, Acta Cryst., B, 46 (1990) 193.
[11] D.D. Makitova, O.N. Krasochka, L.O. Atovmyan, Y.A. Letuchii, O.S. Roschupkina and I.P. Lavrentiev, Koord. Khim., 13 (1987) 1650.
[12] A.R. Kennedy, R.J. Cross and K.W. Muir, Inorg. Chim. Acta, in the press.
[13] R.J. Cross, A.R. Kennedy and K.W. Muir, J. Organomet. Chem., 687 (1995) 227.
[14] S. Nemeh, C. Jensen, E. Binamira-Soriaga and W.C. Kaska, Organometallics, 2 (1983) 1447.
[15] D.M. Grove, G. van Koten and R. Zoet, J. Am. Chem. Soc., 105 (1983) 1379.
[16] J.A.M. van Beek, G. van Koten, W.J.J. Smeets and A.L. Spek, J. Am. Chem. Soc., 108 (1986) 5010.
[17] J. Terheijden, G. van Koten, J.A.L. de Booys, H.J.C. Ubbels and C.H. Stam, Organometallics, 2 (1983) 1882.
[18] G. van Koten, J. Terheijden, J.A.M. van Beek, F. Muller and C.H. Stam, Organometallics, 9 (1990) 903.
[19] C. Masters and B.L. Shaw, J. Chem. Soc., A (1971) 3679; C. Masters, B.L. Shaw and R.E. Stainbank, Chem. Commun., (1971) 209.
[20] C.A. Tolman, Chem. Rev., 77 (1977) 313.
[21] H. Rimml and L.M. Venanzi, J. Organomet. Chem., 258 (1983) C6; Phosph. Sulphur, 30 (1987) 279.
[22] N. Walker and D. Stuart, Acta Cryst., A, 39 (1983) 158.
[23] P.R. Mallinson and K.W. Muir, J. Appl. Crystallogr., 18 (1985) 51.
[24] International Tables for X-ray Crystallography, Vol. IV, Kynoch, Birmingham, UK, 1974, pp. 99-119.

[^0]: * Corresponding author.

[^1]: ${ }^{2}$ The angle at which the aromatic ring tilts (about $\left.\mathrm{C}(1)-\mathrm{C}(4)\right)$ relative to the mean coordination plane.

